Be Author Be Seller Become Member now and avail new Offers!
.com Category
Login
kachhua
Redirecting you.... kachhua

Log in

Mobile No / Email


Password



or
Sign Up
kachhua
Redirecting you.... kachhua

Registration

Already have an account? Login Here

Mobile No.
Name
Email
Password

or Signup with
Cart (0 Items)
Subtotal: $0.00
Your cart is empty!
 


Differential and Integral Calculus Video Lectures for JEE Mains and Advance (std 11&12, 2 year)

In this DVD students will get Differential and Integral Calculus Video Lectures for JEE Mains and Advance
 Differential and Integral Calculus Video Lectures for JEE Mains and Advance (std 11&12, 2 year)
  • 2040
    M.R.P 2550
    You Save:510 (20%)
logo

Fill this Inquiry Form

We will Call You.


Home Delivery

Kaysons Education


Displaying 1-3 of 3 result(s).

About Course

  • 1.       One 8 GB pendrive / Micro SD Card Contenting video lectures

    2.       over 700 questions Discussed

    3.       40 hours of video lectures

    4.       covering 11th syllabus as well as JEE

    5.       Mr. Sanjay Bagga (Qualification: B.Tech IIT Delhi Experience: 19 Years)

    Validity till 30th June 2017

Topics covered in this course

  • Day 1: Fundamentals, Basic Definitions, CLOSED AND OPEN INTERVALS, Modulus or Absolute Value Function, Generalised Results, Wavy Curve Method/Number Line Rule/ Sign Scheme For Rational Function, Fundamentals Of Quadratic Equations, The sum of several non-negative terms.
     

    Day 2: Definition, Independent and dependent variable, Graphical representation of function, Real Function, Content function, Identity function, Modulus function, Properties of modulus function, The greatest integer function, Properties of greatest integral function, Fractional part function, Properties of fractional part of x, Least integer function, Properties of least integer function, Signum Function, Reciprocal function, Logarithmic function, Exponential function, Square root function, Polynomial function, Rational function, Inverse of trigonometric function, Operations on real function, Composition of functions, Rule for Finding Domain.
     

    Day 3: Monotonic Function, Nature of derivative of function, Nature of derivative, Range, Method to find the range of a function y = f(x), Odd and even function, Odd function, Even Function, Properties of odd and even function, Periodic function, Properties of periodic function, While taking LCM we should always remember.
     

    Day 4: Mapping of Function, Kinds of function, One-one Mapping or injective or monomorphic, Method to check one-one mapping, Number of one – one Mapping, Method to check Many-One, Onto Function or (Subjective), Method of show onto or subjective, Number of onto Functions, Number of one – one onto mapping or bijection, Equal and identical function, Inverse of function, Graph of the inverse of an invertible function, Properties of inverse of a function, Composite functions, The adjacent figure shows the steps to be taken, Properties of Composition of function.
     

    Day 5: Illustration.
     

    Day 6: Illustration.

    Limit

    Day 1: Basic concept, Fundamental algebraic operation on limits of function, Standard limits, Indeterminate forms, Sandwich theorem, Some important expansions, Factorization method, Rationalization Method, Based on standard formula.
     

    Day 2: Algebraic function of ∞ type ∞/∞ form, How to solve problems, Trigonometrical Limits, Logarithmic Limits, Exponential Limits.
     

    Day 3: Based on definition of ‘e’, Evaluation of exponential limits of the form 1∞, Particular cases, Miscellaneous Forms, Use of Sandwich theorem (Squeeze theorem), Use of Newton-Leibnitz’s formula in evaluating the limits, L’ Hospital’s Theorem, Advance level.
     

    Day 4: Illustration.

    Continuity and Differentiability

    Day 1: Continuity of a function, Graphical View, Continuity at end points, Jump discontinuity, Properties of continuity function, Differentiability.
     

    Day 2: Differentiability in a set, Some standard results on differentiability.
     

    Day 3: Illustration.

    DVD 2

    Differentiation

    Day 1: Introduction.
     

    Day 2: Derivative of standards functions, Rule (i), Rule (ii) ( Product Rule), Generalization of the product rule, Rule (iii) (Quotient rule), Differentiation of a function of a function, Differentiation by using trigonometrical transformations.
     

    Day 3: Differentiation of implicit functions, Logarithmic Differentiation, Differentiation of parametric functions, Differentiation of a function with respect to another function, Differentiation of determinants.
     

    Day 4: Illustration.

    Application and Derivatives

    Day 1: Derivative as a rate measurer, Derivative as the time rate of change, Differentials, Errors and Approximations, Rolle’s & Lagrange’s Theorem, Rolle’s Theorem, Geometrical proof, Lagrange’s Theorem, Geometrical interpretation.
     

    Day 2: Illustration

    Tangents and Normals

    Day 1: Basic definition, Slope (Gradient) of a line, Slope of a line in terms of coordinates of any two points on it, Slope of a line when its equation is given, Angle between two lines, Equation of a straight line.
     

    Day 2: Illustration.

    Monotonicity

    Day 1: Monotonic function.
     

    Day 2: Properties of Monotonic Functions, Advance level Include Subjective type questions.
     

    Day 3: Illustration.

    Maxima Minima

    Day 1: Definition, Maxima and Minima at end point, Method of finding extrema of continuous functions, Method of 2nd derivative, Concept of Global Maximum / Minimum, Global Maximum / Minimum in [a, b], Global Maximum / Minimum in (a, b).
     

    Day 2: Applied problems in maxima and minima.
     

    Day 3: Maxima and Minima in Discontinuous Function, Minimum of discontinuous functions, Maximum of discontinuous functions, Method of finding the greatest and least values of a continuous function.
     

    Day 4: Illustration.

    Graphical Transformation

    Day 1: Some Standard Graphs, Straight Line, Ellipse, Hyperbola, Rectangular Hyperbola, Transformation of Graphs, How to draw graph of Polynomial, Draw the graph, Plotting graph of f(x – [x]),
     

     

Complete Product Details

  • Subject : Maths for jee mains and advance

    Class : 11th and 12th

    Course Doration : 21 Hours

    Validity : 17-Jun

     

    Chapters : Differential Calculus-Fundamentals and Functions, Limit, Continuity and Differentiability, Differentiation, Application of Derivatives Tangents and Normal’s, Monotonicity, Maxima Minima, Graphical Transformation (integral Calcuas )  -Indefinite Integral, Definite Integral, Differential Equation, Area

 
Discussion
 
Provided by
K

kaysonseduction is a website which provide detailed, comprehensive guidance to students aspiring for different competitive examinations across India. kaysons provide video lectures and study material of Physics, Chemistry and Mathematics for IIT-JEE.

Show more

Invite friends and earn upto 20% of all orders placed by them.

Earn by sharing url

Share the link:

COPY



  kachhua
Help & Support Request a Callback Call us on | India : +919662523399/66