Be Author Be Seller Become Member now and avail new Offers!
.com Category
Login
kachhua
Redirecting you.... kachhua

Log in

Mobile No / Email


Password



or
Sign Up
kachhua
Redirecting you.... kachhua

Registration

Already have an account? Login Here

Mobile No.
Name
Email
Password

or Signup with
Cart (0 Items)
Subtotal: $0.00
Your cart is empty!
 


Quant Trading using Machine Learning : Online course

This online course has just enough theory to get you started with both Quant Trading and Machine Learning..
Quant Trading using Machine Learning : Online course
  • ₹ 2999
logo
: Online Course
: English
: Loonycorn
Displaying 1-4 of 4 result(s).

About Course

  • Prerequisites: Working knowledge of Python is necessary if you want to run the source code that is provided. Basic knowledge of machine learning, especially ML classification techniques, would be helpful but it's not mandatory.

    This course takes a completely practical approach to applying Machine Learning techniques to Quant Trading

    Completely Practical: This course has just enough theory to get you started with both Quant Trading and Machine Learning. The focus is on practically applying ML techniques to develop sophisticated Quant Trading models. From setting up your own historical price database in MySQL to writing hundreds of lines of Python code, the focus is on doing from the get go.

    Machine Learning Techniques: We'll cover a variety of machine learning techniques, from K-Nearest Neighbors and Decision Trees to pretty advanced techniques like Random Forests and Gradient Boosted Classifiers. But, in practice Machine Learning is not just about the algorithms. Feature Engineering, Parameter Tuning, Avoiding overfitting; these are all a part and parcel of developing Machine Learning applications and we do it all in this course. 

    Quant Trading: Quant Trading is a perfect example of an area where the use of Machine Learning leads to a step change in the quality of the models used. Traditional models often depend on Excel and building sophisticated models requires a huge amount of manual effort and domain knowledge. Machine Learning libraries available today allow you to build highly sophisticated models that give you much better performance with much less effort. 

Curriculam

What you will get from this course?

    • Develop Quant Trading models using advanced Machine Learning techniques
    • Compare and evaluate strategies using Sharpe Ratios
    • Use techniques like Random Forests and K-Nearest Neighbors to develop Quant Trading models
    • Use Gradient Boosted trees and tune them for high performance
    • Use techniques like Feature engineering, parameter tuning and avoiding overfitting
    • Build an end-to-end application from data collection and preparation to model selection
    • Quant Trading : Financial Markets, Stocks, Indices, Futures, Return, Risk, Sharpe Ratio, Momentum Investing, Mean Reversion, Developing trading strategies using Excel, Backtesting

    • Machine Learning: Decision Trees, Ensemble Learning, Random Forests, Gradient Boosted Classifiers, Nearest Neighbors, Feature engineering, Overfitting, Parameter Tuning

    • MySQLSet up a historical price database in MySQL using Python. 

    • Python Libraries : Pandas, Scikit-Learn, XGBoost, Hyperopt

      A Note on Python: The code-alongs in this class all use Python 2.7. Source code (with copious amounts of comments) is attached as a resource with all the code-alongs.

       

Who should buy this course?

    • Quant traders who have not used Machine learning techniques before to develop trading strategies
    • Analytics professionals, modelers, big data professionals who want to get hands-on experience with Machine Learning
    • Anyone who is interested in Machine Learning and wants to learn through a practical, project-based approach
    • Working knowledge of Python is necessary if you want to run the source code that is provided.
 
Discussion
 
Provided by
L

Loonycorn is us, Janani Ravi, Vitthal Srinivasan, Swetha Kolalapudi and Navdeep Singh. Between the four of us, we have studied at Stanford, IIM Ahmedabad, the IITs and have spent years (decades, actually) working in tech, in the Bay Area, New York, Singapore and Bangalore.

Show more

Invite friends and earn upto 20% of all orders placed by them.

Earn by sharing url

Share the link:

COPY



  kachhua
Help & Support Request a Callback Call us on | India : +919662523399/66